Characterization of Ionic Winds from Flames and Corona Discharges

Derek Dunn-Rankin

Mechanical and Aerospace Engineering University of California, Irvine

California Institute of Technology, Pasadena, CA – February 25, 2005

Creating Ionic Wind via Corona

1 Td = 10^{-21} V m² E = electric field strength (V/m) N = neutral density – $(1/m^3)$

Drawing not to scale – from Chen and Davidson, *Plasma Chemistry and Plasma Processing*, Vol. 23, No. 1, March 2003.

Ion Winds and The Electric Fly

- Wilson (1750) built spinning pinwheel
- Cavallo (1777) claims similar-charged air repels points
 - does not work in vacuum
- Electric fly used to discuss ion wind theory: Michael Faraday (1838), James Clerk Maxwell (1873), among others
- Most recently discussed by Leonard Loeb in *Electrical Coronas* (1965)
- Electric fly motion can be observed before any wind motion
 - spins at voltages well below breakdown

Rotational Speed Linear with Voltage

Applications of Ionic Winds

Coronas

- Ionic Breeze fan and particle removal
- Air delivery without moving parts
- Electrostatic precipitator enhancement
- Heat transfer and evaporation
- Plasma actuators
- Flames
 - Dynamic flame control
 - Heat direction in microgravity
 - Earth-based microbuoyancy

Ionic Wind Applications

Sharperimage.com

PIV Experiment

3 Camera

- 6 Rubber tubing
- Copper Vapor laser sync'd to 2kHz camera captured high-speed video
- Camera shifted 45° forward of perpendicular to maximize intensity •
- Personal Air Purifier electrodes powered by variable -HV power supply
- Water/glycerin mist traced air flow (seeded downstream of electrodes)

High-speed video

- HV=-10.3 kV (max before breakdown) shown for subtle nozzle (ID = 9.5 mm)
- Actual orientation: directly upwards
- Capture rate: 1,825 frames per second
 - Real time elapsed during 500 images: 1/4 seconds
- Viewing rate: 25 frames per second
 - Total time to view 500 images: 20 seconds

PIV results -- Velocity profile at exit

Optimizing the Ion Wind

Flow Limit of Single Stage

Exit Area / Inlet Area

Stacking Stages to Increase Pressure

Multi-Stage Ion Blower

Staged System Performance

Future Activities

- Swirl Generator
 ESP enhancement
- Microscale Gas Delivery

 Point of application flows
- All Electric Burner
- Modeling

Applications of Ionic Winds

• Coronas

- Ionic Breeze fan and particle removal
- Electrostatic precipitator enhancement
- Heat transfer and evaporation
- Plasma actuators
- Flames
 - Dynamic flame control
 - Heat direction in microgravity
 - Earth-based microbuoyancy

Flame Derived Ion Wind

lons travel from the flame towards ground

Electrons conduct through the flame to the capillary

Force and Velocity from Ion Wind

- K is mobility of the charge carrier -- 1 cm²/s/V
- g is gravitational acceleration; ρ is the density
- x is the distance over which the field acts
- *j* is current density flame: 1 μA/ cm²

Order of 1-2

Order of 1 m/s over 1 cm distance

Effect on Small Diffusion Flame

Methane fuel flowrate: 9 cc/min Capillary diameter: 1.7 mm Electrode Spacing: 7 cm

Conditions

- 1. Naturally Buoyant 0 Volts
- 2. Microbuoyant 2880 Volts
- Negatively buoyant 4300 Volts

Double Exposure Holographic Interferometry Images (setup #1)

0 Volts

2242 Volts

2765 Volts

Flame Current

saturation plateau

Toward Feedback Control

what do we measure for feedback? CH*

commonly accepted that CH* is

 a "good" measure of the global
 heat release in a flame
 CH* emission is linearly
 related to the fuel flow rate
 the electronically excited
 states are confined to a
 thin region of the primary
 flame surface

Sine Tracking

Refined Apparatus

- Acrylic chamber
- Ion current measured at the cathode (ground plane)
- Temperature, pressure, and relative humidity are monitored
- Continuous running via air flushing

Schlieren Imaging Illustrates Complexity

- Identify buoyancy regimes
- Determine relative electrical characteristics between fuels
- Z-type schlieren apparatus
- Conventional and high speed video

Ion Current Profiles

1.2

0.8

0.6

0.4

0.2

40

Point-to-plane distribution (Warburg Law) = $\cos^5 \Theta$ X new data set 2 Integrated current provides ion density boundary conditon new data set 3 ▲ Jan 21 data - Warburg Law Current distribution for model validation + HV **** INSULATED ION PROBE TRAVERSE V probe .40 -30 -20 -10 0 10 20 30 Radius [mm] R_{probe}≩ DMM R_{ground plane} Earthed ĬWW

Numerical Simulation

Gauss's Law

$$\nabla^2 V = \frac{\rho_e}{\varepsilon_o} = \frac{ce}{\varepsilon_o}$$

Momentum

$$\rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla) u = -\nabla P + \rho_o g \left(1 - \frac{T_o}{T} \right) + \nabla \cdot (\mu \nabla u) + c e \overline{E}$$

Mass

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0$$

Energy

$$P \frac{\partial (c_p T)}{\partial t} + \rho u \cdot \nabla (c_p T) = u \cdot \nabla P + \nabla \cdot (k \nabla T)$$

Ion concentration

$$\frac{\partial c}{\partial t} + (u \cdot \nabla)c = \nabla \cdot (D\nabla c + ceK_{+}\nabla V)$$

Computational Model

- Single ion species (positive ions)
- Temperature is constant within the flame (hot flow)
- Uniform ion concentration at the flame
- Ion properties are of H₃O⁺

Electrokinetic Potential Field

- Ion motion is decoupled from the field (electrokinetic assumption)
- Flux pathlines illustrate no flux beyond 20 mm away from the centerline

Role of Ion Diffusion

1500

 $D_{i,air} = 10^{-9} \times T^{1.775}$

1200

300

600

900

Temperature [K]

Including Space Charge Effects

- Gauss's law is solved including space charge
- Space charge drives ions to travel further from the centerline

Effect of Ion Concentration

Overall ion concentration in flame is varied

- Lower concentration (10⁸ ions/cc) profile narrows
- Higher concentration (10¹⁰-10¹² ions/cc) profile broadens

Buoyant Flow Preliminary Results

Hot Flow at Balance Preliminary Results

Flame Derived Ion Wind

Final Thoughts

- Ionic winds produce modest flows (a few m/s) with no moving parts
- Positive and negative polarity produces flow in the same direction (allows AC approaches)
- Efficiencies (flow power out/electrical power in) are low but not far worse than standard fans at small sizes
- Flame source ion winds require far less electrical energy (100 times less) than corona winds
- Optimizing ionic wind systems should be possible by modeling systems with various ground plane geometries

Acknowledgments

- Matt Rickard (ionic wind) and Mike Papac (electric flame) – current UCI graduate student researchers
- Ben Strayer (flame control) and Jonathan Posner (holographic interferometry) – past UCI graduate students
- Prof. Felix Weinberg and Dr. Fred Carleton Imperial College
- NASA Microgravity Combustion Program