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Creating Ionic Wind via Corona

• Chattock wind
• Ion wind
• Ionic wind
• EHD flow
• Electric wind

Negative DC Corona 
Discharge

1 Td = 10-21 V m2

E = electric field strength (V/m)
N = neutral density – (1/m3)

Drawing not to scale – from Chen and Davidson, Plasma 
Chemistry and Plasma Processing, Vol. 23, No. 1, March 2003.



Ion Winds and 
The Electric Fly

• Wilson (1750) built spinning 
pinwheel

• Cavallo (1777) claims 
similar-charged air repels 
points
– does not work in vacuum

• Electric fly used to discuss 
ion wind theory: Michael 
Faraday (1838), James Clerk 
Maxwell (1873), among 
others

• Most recently discussed by 
Leonard Loeb in Electrical 
Coronas (1965)

• Electric fly motion can be 
observed before any wind 
motion
– spins at voltages well 

below breakdown



Rotational Speed Linear with Voltage
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Applications of Ionic Winds
• Coronas

– Ionic Breeze – fan and particle removal
– Air delivery without moving parts
– Electrostatic precipitator enhancement
– Heat transfer and evaporation
– Plasma actuators

• Flames
– Dynamic flame control
– Heat direction in microgravity
– Earth-based microbuoyancy



Ionic Wind 
Applications
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PIV Experiment
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• Copper Vapor laser sync’d to 2kHz camera captured high-speed video
• Camera shifted 45º forward of perpendicular to maximize intensity
• Personal Air Purifier electrodes powered by variable -HV power supply
• Water/glycerin mist traced air flow (seeded downstream of electrodes)



High-speed video
• HV=-10.3 kV (max before breakdown) shown for subtle nozzle ( ID 

= 9.5 mm )
• Actual orientation: directly upwards
• Capture rate: 1,825 frames per second

– Real time elapsed during 500 images: 1/4 seconds
• Viewing rate: 25 frames per second

– Total time to view 500 images:  20 seconds



PIV results -- Velocity profile at exit
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Point-to-Cylinder Ionic Wind
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Optimizing the Ion Wind
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Ideal

Ideal is velocity needed to 
maintain 6.4 l/min flow rate as 
nozzle exit area decreases

Flow Limit of Single Stage



Stacking Stages to Increase Pressure



Multi-Stage Ion Blower



Pressure 
Delivered

5.5 Pa per stage



Staged System Performance

Ionic Wind 
Fan Curves



Future Activities

• Swirl Generator
– ESP enhancement

• Microscale Gas Delivery
– Point of application flows

• All Electric Burner
• Modeling



Applications of Ionic Winds

• Coronas
– Ionic Breeze – fan and particle removal
– Electrostatic precipitator enhancement
– Heat transfer and evaporation
– Plasma actuators

• Flames
– Dynamic flame control
– Heat direction in microgravity
– Earth-based microbuoyancy



Flame Derived Ion WindFlame Derived Ion Wind
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Force and Velocity from Ion Wind
• K is mobility of the charge carrier -- 1 cm2/s/V
• g is gravitational acceleration; ρ is the density
• x is the distance over which the field acts
• j is current density – flame: 1 µA/ cm2 
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Effect on 
Small 

Diffusion 
Flame

Methane fuel flowrate:  9 cc/min
Capillary diameter:  1.7 mm
Electrode Spacing:  7 cm

Conditions
1. Naturally Buoyant – 0 Volts
2. Microbuoyant – 2880 Volts
3. Negatively buoyant – 4300 

Volts
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Double Exposure Holographic 
Interferometry Images (setup #1)
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Flame Current
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• Saturation 
current can be 
characteristic of 
the flame

• Current provides 
a detection 
and/or decision 
opportunity (e.g., 
ion probe)

saturation plateau



Toward Feedback Control
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•commonly accepted that CH* is 
a “good” measure of the global 
heat release in a flame

•CH* emission is linearly 
related to the fuel flow rate
•the electronically excited 
states are confined to a 
thin region of the primary 
flame surface



Sine Tracking
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Refined Apparatus
•• Acrylic chamber Acrylic chamber 

•• Ion current measured at the cathode (ground plane)Ion current measured at the cathode (ground plane)

•• Temperature, pressure, and relative humidity are monitoredTemperature, pressure, and relative humidity are monitored

•• Continuous running via air flushingContinuous running via air flushing
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Schlieren Imaging Illustrates ComplexitySchlieren Imaging Illustrates Complexity

•• Identify buoyancy regimesIdentify buoyancy regimes

•• Determine relative electrical Determine relative electrical 
characteristics between fuelscharacteristics between fuels

•• ZZ--type type schlierenschlieren apparatusapparatus

•• Conventional and high speed Conventional and high speed 
videovideo

1000 V
Buoyant

(negligible current)

2000 V
under balanced
(subsaturated)

2400 V
Balanced condition

(saturation)

3000 V
Partially neg-buoyant

(some 2ndary ionization)

5300 V
Negatively buoyant

(much 2ndary ionization)

Ethane Fuel [12.7 mg/min]

1000 V
Buoyant

(negligible current)

1000 V
Buoyant

(negligible current)

2000 V
under balanced
(subsaturated)

2000 V
under balanced
(subsaturated)

2400 V
Balanced condition

(saturation)

2400 V
Balanced condition

(saturation)

3000 V
Partially neg-buoyant

(some 2ndary ionization)

3000 V
Partially neg-buoyant

(some 2ndary ionization)

5300 V
Negatively buoyant

(much 2ndary ionization)

5300 V
Negatively buoyant

(much 2ndary ionization)

Ethane Fuel [12.7 mg/min]

LIGHT SOURCEIRIS

MIRROR 
(f = 48 in)

MIRROR 
(f = 48 in)

KNIFE EDGE 
OR IRIS

LENS

LENS

VELLUM
SCREEN

VIDEO
CAMERA

6 in

Z – TYPE SCHLIEREN APPARATUS

LIGHT SOURCEIRIS

MIRROR 
(f = 48 in)

MIRROR 
(f = 48 in)

KNIFE EDGE 
OR IRIS

LENS

LENS

VELLUM
SCREEN

VIDEO
CAMERA

6 in

Z – TYPE SCHLIEREN APPARATUS



Ion Current ProfilesIon Current Profiles

•• PointPoint--toto--plane distribution plane distribution 
(Warburg Law) = cos(Warburg Law) = cos55ΘΘ

•• Integrated current provides ion Integrated current provides ion 
density boundary density boundary conditonconditon

•• Current distribution for model Current distribution for model 
validation
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Numerical SimulationNumerical Simulation
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Computational Model

• FEMLAB simulation
• Finite element method
• General equation solver
• Staged solution

1.  Electrokinetic (V, c)
2.  Electrodynamic (V, c)
3.  Hot flow (V, u, v, P, T, c) 

• 2-D axisymmetric
• Assumptions

– Balance condition
– Isotropic Fickian diffusion
– Single ion species (positive ions)
– Temperature is constant within the flame (hot flow)
– Uniform ion concentration at the flame
– Ion properties are of H3O+
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Electrokinetic Potential Field

• Ion motion is decoupled from the field (electrokinetic assumption)
• Flux pathlines illustrate no flux beyond 20 mm away from the centerline



Role of 
Ion 

Diffusion

• Diffusivity is varied to match experimental profile
– D(T) varies by a factor of approx 20 from 300-1500 K

• Results
– True D/K approximately 1 V
– Ion drift speed more than 1000 times diffusion velocity
– Ion diffusion cannot account for measured profile
– Space charge dispersion is significant
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Including Space Charge EffectsIncluding Space Charge Effects

• Gauss’s law is solved including space charge
• Space charge drives ions to travel further from the centerline



Effect of Ion ConcentrationEffect of Ion Concentration
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Overall ion concentration in flame is varied
– Lower concentration (108 ions/cc) – profile narrows
– Higher concentration (1010-1012 ions/cc) – profile broadens



Buoyant Flow Preliminary Results



Hot Flow at Balance Preliminary Results

c = 109 ions/cc
V = 2800 Volts



Flame Derived Ion WindFlame Derived Ion Wind

Induced electric field 
(causes horiz. migration)

V

Re-circulation driven by 
neutralized buoyant gas 
redirection
• Source of unstable T and O2
• Observed in shadowgraphs

Neutralization by 
electrons at the cathode

Ions travel from the 
flame towards ground

Electrons conduct 
through the flame to the 
capillary 

High ion concentration at 
the center decreasing  
radially outward
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Final Thoughts
• Ionic winds produce modest flows (a few m/s) 

with no moving parts
• Positive and negative polarity produces flow in 

the same direction (allows AC approaches)
• Efficiencies (flow power out/electrical power in) 

are low but not far worse than standard fans at 
small sizes

• Flame source ion winds require far less electrical 
energy (100 times less) than corona winds

• Optimizing ionic wind systems should be possible 
by modeling systems with various ground plane 
geometries
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