
MAE106 Laboratory Exercises 
Lab # 4 - P-type digital control of a 

motor 

University of California, Irvine 
Department of Mechanical and Aerospace Engineering 

Goals 
Understand how to create a P-type velocity controller using a DC motor coupled with a 
rotary encoder. 

Parts & equipment 
Qty Part/Equipment 

1 Seeeduino board 

1 Motor driver 

1 DC motor with encoder 

Introduction 
As a mechanical and/or aerospace designer, you will sometimes want to control actuators 
on a machine, such as a robot, car, plane, or space vehicle, to make the machine move 
like you wish. The purpose of this laboratory exercise is to learn how to use a 
microcontroller (e.g. an Arduino) to control a motor. One of the major benefits of using a 
microcontroller is that you can express the control law and control gains in software. 
Changing the control law just involves typing in new software code. This will be really 
useful for your final project. Note that an alternate way to set up controllers is with analog 
circuit elements, such as op-amps. Such controllers respond more quickly than a 
computer, but changing parameters requires changing resistors or capacitors. With the 
decreasing cost and increasing speed of processors, it’s more common now to implement 
controllers with microcontrollers. 

The basic idea of computer-based control is to: 

1. Electronically measure the system performance (In this lab, the system performance in 
which we are interested, i.e. the thing we are trying to control, is the angular velocity of 
the motor shaft. We will measure this with a rotary encoder) 

2. Read this measurement using the microcontroller (In this lab, you will read the pulses 
from the encoder into two of the digital inputs of the Arduino using 2 interrupt service 
routines (ISRs)). If the output of your sensor were analog, you could read it using one of 
the Arduino’s analog pins; 



3. Calculate an appropriate control law in a program running on the microcontroller; 

4. Generate an output voltage that is sent to the motor. 

 

Rotary encoder 
A rotary encoder is a device that converts the rotation of its shaft into digital voltage pulses. 
Two common types of rotary encoders are optical and Hall effect encoders. Consider an 
optical encoder first (Figure 1), as they are easier to understand. An optical rotary encoder 
is made of a rotating disk with slits cut in it, and a light emitter shining light through the 
disk toward a light sensor. The disk is connected to the shaft of the encoder. As the shaft 
rotates, the disk alternately blocks or allows light to enter the light sensor, depending on 
whether there is currently a slit in front of the light emitter or not. Thus, each time a slit 
passes the light emitter, the light sensor outputs a pulse of voltage. For an “incremental 
encoder” or “relative encoder” such as the one we are using in lab, the microcontroller 
measures the amount of rotation by counting the pulses being sent by the encoder. 
Incremental encoders typically have two light emitters and two light sensors, with two 
tracks of slits, which allows them to determine the direction of motion using “quadrature 
encoding”. 

 

Figure 1. Optical encoder (image from National Instruments) 

 

Hall effect sensor 
For the motor in this lab, the rotary encoder is a Hall effect encoder, which produces 
voltage pulses just like an optical encoder (Figure 1). The difference is that the pulses are 
produced when a magnet on the shaft passes close to a Hall effect sensor. A Hall effect 
sensor make use of the Lorentz force law. When a magnetic field comes close to the 
sensor, it creates a Lorentz force on the charges flowing through the sensor, pushing them 
to one side of the sensor, thereby causing a small voltage difference in the direction 
perpendicular to current flow (see Figure 2). This voltage changes with the proximity and 
polarity of the magnetic field, so by putting magnets on a shaft, turning the shaft will cause 
the Hall effect sensor to output voltage pulses. 



 

Figure 2. Hall effect sensor (image from 
http://www.akm.com/akm/en/product/add/magnetic_sensors/0029/) 

For a detailed tutorial on using a Hall effect sensor see: 

http://www.electronics-tutorials.ws/electromagnetism/hall-effect.html 

Interrupts  
Interrupts are hardware signals that are used to temporarily stop the main program and 
allow a special program to run. Many microcontrollers, including the Arduino, have 
dedicated hardware that can continuously monitor a voltage on a pre-defined input line, 
called an “interrupt line” (your Seeeduino has 2 interrupt lines). When the voltage on the 
interrupt input line changes, this hardware immediately tells the microcontroller to stop 
what it is doing and run the “Interrupt Service Routine” (ISR), which is a piece of code that 
does something in response to the “interruption” indicated on the interrupt line. ISR’s are 
useful when you have a device connected to a microcontroller that provides rapidly 
changing information at random times, such as rotary encoders. Rather than having your 
main program periodically check the encoder (in which case it might miss a pulse if it isn’t 
checking often enough), you set up an ISR to respond to the encoder immediately when 
it provides new information. 

Reading from the encoder 
There are six wires coming out of the encoder: 

• Red wire: motor power, 

• Black wire: motor power, 

• Green wire: encoder GND, 

• Blue wire: encoder VCC (5 V), 

• Yellow: encoder A output, 

• White: encoder B output. 

The vendor of the DC motor provides instructions on using the encoder that is coupled to 
your DC motor (see section "Using the Encoder" in: https://www.pololu.com/product/3214, 
see also the video on the website: 
http://gram.eng.uci.edu/~dreinken/MAE106/res/motorEncoderDemoMAE106.mp4, and 
Figure 4). 

Make sure that you understand what happens when you spin the motor in both directions. 

http://www.akm.com/akm/en/product/add/magnetic_sensors/0029/
http://www.electronics-tutorials.ws/electromagnetism/hall-effect.html
https://www.pololu.com/product/3214
http://gram.eng.uci.edu/~dreinken/MAE106/res/motorEncoderDemoMAE106.mp4


 

Figure 4. Output from Encoders A and B shown in an oscilloscope. 
(Image from: https://www.pololu.com/product/1442)

https://www.pololu.com/product/1442


Part I: P-type control of the velocity of the DC motor 
 

We will use the encoder to measure the velocity of the motor and use the measurement 
as a feedback signal to control the motor. 

Use the code provided here:  

http://gram.eng.uci.edu/~dreinken/MAE106/labs/Lab4Pvelocity.ino,  

to control the velocity of the motor. Go through it and relate the parts of the code to 
the steps mentioned below.  

To implement the P-type (proportional-type) velocity feedback controller. The program 
needs to:  

1. read the signals from the encoders,  
2. compute the velocity of the motor,  
3. calculate the control law, and  
4. send the control signal to the motor driver.  

Since we are able to measure the velocity of the motor, the next step is to implement the 
control law and send the appropriate signal to the motor driver. 

The equation that describes the control law is: 

𝑢 = −𝐾𝑝(𝜔 −  𝜔𝑑) 

where: 

𝑢 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑑𝑟𝑖𝑣𝑒𝑟, 

 𝐾𝑝 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑔𝑎𝑖𝑛, 

𝜔 = 𝑚𝑜𝑡𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 

𝜔𝑑 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑚𝑜𝑡𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

The basic idea of this controller is to measure the velocity error of the motor shaft, and 
then to apply torques proportional to those errors (hence the name proportional-type 
controller), so that the motor shaft turns at an angular velocity closer to the desired angular 
velocity. Note that if the error is zero, the correction torque to be applied is zero; if the error 
is large, the correction torque to be applied is large. 

 

http://gram.eng.uci.edu/~dreinken/MAE106/labs/Lab4Pvelocity.ino


 

Figure 5. Motor and encoder connections to motor driver  
(NOTE: the color of the wires drawn here, between the motor’s 6-pin connector and the shield, 

correspond to the color of wire they should be connected to) 

 

You will wire the motor and its encoder as shown in Figure 5. Make sure that you uploaded 
the code to the Arduino. If you reset your Arduino the motor should spin for a short amount 
of time and then stop following the procedure: 

1. Turn the motor for a short time (~1 s) attempting to follow 𝜔𝑑, while collecting data. 
2. Motor stops. 
3. Arduino prints data collected form Step 1 to Serial Monitor. 
4. Waits for the Arduino to restart, or the Serial Monitor window to be opened, then 

starts over at Step 1. 

 

Practical Exam I: 
Collect the data for Kp = 1, 2, 3, and 4. Make sure to set desVel_amplitude (𝜔𝑑) to 

60 rad/s. Hold the body of the motor tightly while collecting data! Make sure that 

constantVelocity is set to true. Plot the four curves on the same plot and show your 

TA. Be prepared to explain the effect of Kp on the steady state error and the time constant. 
Save your data for the write-up! 

  



Part II: Frequency response for the velocity of the DC motor 

The goal of this part of the lab is to characterize the frequency response of the system, to 
show that it resembles the behavior of a low pass filter. In particular, you will explore how 
well the system tracks the desired input velocity when the input is a sinusoid, across a 
range of frequencies, following the equation: 

𝜔𝑑 = 𝐴 ∗ sin (2𝜋 ∗ 𝑓 ∗ 𝑡) 

To characterize the frequency response of the system, follow the steps below.  

REMEMBER: DO NOT LET YOUR MOTOR OVERHEAT. 

1. Set Kp equal to 4; 

2. Set constantVelocity to false; 

3. Set desVel_amplitude (𝐴) to 60; 

4. Set desVel_frequency (𝑓) to the desired frequency. 

 

Practical Exam II: 
Collect the data for four different frequencies by setting desVel_frequency (𝑓) = 1, 5, 

10, 20, and 40. Hold the body of the motor tightly while collecting data! Make sure 

that constantVelocity is set to false. Plot the four curves on separate plots and 

show your TA. Be prepared to explain the effect of frequency on the amplitude and phase 
shift and explain how you would measure amplitude. Save your data for the write-up! 

  



Write-Up 
Present the following plots: 

1. Motor speed as a function of time for all values of Kp. Also include the desired 
velocity (part I). 

2. Use the control law to calculate the control value (u) that was applied at each data 
point collected. Plot u as a function of time for each value of Kp in a single figure 
(part I). 

• Write the control law. Briefly explain how it used the desired and actual 
velocities.  

3. Steady state error as a function of Kp (part I). 

• Is this plot roughly consistent with the equation relating steady state error 
and Kp from lecture? Explain. 

4. Time constant as a function of Kp (part I).  

• Is this plot roughly consistent with the equation relating the time constant 
and Kp from lecture? Explain. 

• Hint: It may be easier to measure 5 time constants, which is the time at 
which signal reaches 99.3% of steady state.  

5. Amplitude of output sine wave as a function of the frequency (part II). 

• Explain why this data resembles a low pass filter. What happens to low 
frequencies? High frequencies? 

 


