
MAE106 Laboratory Exercises
Lab # 1 - Laboratory tools

University	of	California,	Irvine	
Department	of	Mechanical	and	Aerospace	Engineering	

Goals
To	learn	how	to	use	the	oscilloscope,	function	generator,	breadboard,	and	potentiometer.	
To	learn	how	to	use	the	Arduino	microcontroller	board.	

Parts & equipment
Qty	 Part/Equipment	

1	 Breadboard	
1	 Potentiometer	

Various	 Wire	
1	 Function	generator	
1	 Oscilloscope	
1	 Multimeter	
1	 Seeduino	board	(Arduino)	

Introduction
The	 oscilloscope	 and	 function	 generator	 are	 useful	 tools	 for	 making	 measurements	 and	
debugging	 machines.	 The	 solderless	 breadboard	 is	 useful	 for	 building	 circuits.	
Potentiometers	are	common	circuit	elements	to	control	voltages	and	measure	rotations.	

The	Arduino	board	 is	a	very	useful	microcontroller	 that	provides	an	easy	setup	to	control	
electromechanical	systems.		

Note:	When	making	electrical	circuits	 in	 lab,	a	mistake	 in	wiring	may	result	 in	a	component	
getting	 "fried".	 If	 you	 smell	 something	burning,	 immediately	 turn	off	 your	power	 supply	and	
debug	your	circuit.	

	 	

Part	I:	The	oscilloscope	and	function	generator	(45	min.)	
When	 you	 are	 building	 a	 device,	 sometimes	 you	 want	 to	 be	 able	 to	 apply	 certain	 input	
voltages	to	them.	A	function	generator	is	a	device	that	produces	voltage	waveforms	such	as	
sine,	 square,	 and	 triangle	 waves,	 all	 with	 variable	 amplitude,	 frequency,	 and	 offset.	 For	
example,	the	function	generator	can	produce	a	voltage	with	the	form:	

𝑣 𝑡 = 𝑣!""#$% + 𝑎 ∗ 𝑠𝑖𝑛(𝜔𝑡)		 Equation	1	

where	the	amplitude	(𝑎),	the	frequency	(𝜔),	and	the	offset	(𝑣!""#$%)	are	all	adjustable.	

When	 you	 build	 an	 electromechanical	 machine,	 such	 as	 a	 robot,	 you	 need	 to	 be	 able	 to	
measure	the	voltages	the	device	sends	to	different	places	so	that	you	can	debug	your	design.	
A	very	useful	tool	for	this	purpose	is	an	oscilloscope,	which	allows	you	to	measure	and	view	
voltage	as	a	function	of	time.	

Reading	a	Signal	Using	an	Oscilloscope	

	

Fig.	1:	Oscilloscope.	Important	control	knobs	and	on-screen	information	

1.	Make	sure	that	the	oscilloscope	CH	1	probe	is	connected	to	the	output	you	want	to	read	
and	that	the	alligator	clip	is	connected	to	ground.	The	multiplier	on	the	oscilloscope	probe	
should	be	at	the	1x	setting.		

2.	Press	the	CH	1	MENU	button	(Fig.	1,	green)	and	make	sure	that	Coupling	is	set	to	DC.	

3.	Adjust	 sec/div	 (Fig.	 1	 blue)	 –	 each	 vertical	 line	 on	 the	displayed	 screen	 represents	 the	
sec/div	 you	 selected,	 channel	 1	 volts/div	 (Fig.	 1	 yellow)	 –	 each	 horizontal	 line	 on	 the	
displayed	 screen	 represents	 the	volts/div	 you	 selected,	 and	 channel	1	horizontal	position	
(Fig.	1	yellow),	until	you	can	see	the	yellow	line	(channel	1	signal)	on	screen.	

4.	Adjust	the	trigger	level	until	it	crosses	the	signal	on	screen.	The	trigger	level	is	shown	by	
the	little	arrow	on	the	right	of	the	screen.	Refine	the	scale	and	positioning	settings	until	the	
signal	 is	 shown	 as	 desired.	 Do	 not	 use	 the	 run/stop	 button	when	 your	 signal	 is	 scrolling	
horizontally	on	the	screen.	Setting	the	appropriate	trigger	level	will	 fix	that	 issue	and	give	
you	extra	information	about	the	signal.	

	

	
	

Fig.	2:	Function	generator	on	the	left	and	connection	between	function	generator	output	and	
oscilloscope	CH1	probe	(alligator	clip	goes	to	GND)	

5.	You	can	now	read	the	signal	by	using	the	information	on	the	screen.	The	yellow	arrow	on	
the	left	of	the	screen	corresponds	to	the	ground	level.	The	reading	for	‘CH1’	at	the	bottom	of	
the	screen	corresponds	to	the	number	of	Volts	between	horizontal	lines.	‘M’	corresponds	to	
the	 amount	 of	 time	 between	 vertical	 lines.	 Using	 this	 information,	 you	 should	 be	 able	 to	
extract	the	main	features	of	the	signal	(peak	to	peak	voltage,	frequency,	DC	offset,	etc).	

Practical	Exam	#	1	
Use	the	function	generator	to	create	a	100Hz	sine	wave	with	𝒂 = 𝟏-volt	amplitude	and	
2	 volts	 DC	 offset.	 	 Using	 Equation	 1,	write	 down	 the	mathematical	 formula	 for	 this	
wave	 and	 label	 its	 components	 (amplitude,	 offset,	 and	 frequency).	 Finally,	 display	
this	 wave	 in	 the	 oscilloscope	 and	 show	 it	 to	 your	 TA	 along	 with	 the	mathematical	
formula	(with	labels)	describing	the	wave.	

	

A	Word	about	Breadboards			
You	will	 use	 an	 electronic	 breadboard	 (solderless	 breadboard)	 to	wire	 up	 temporary	

circuits	 as	 you	 build	 different	 devices	 you	 design.	 	 Electronic	 components	 and	wires	 are	
inserted	into	the	numerous	sockets	(holes)	on	the	board.		The	sockets	(dots)	are	connected	
internally	(lines)	as	shown	in	Figure	2.		A	good	method	for	wiring	complicated	circuits	is	to	
connect	the	source	voltage	(+5V,	!15	V)	and	ground	terminals	from	the	trainer	kit	to	the	
long	narrow	horizontal	strips	(Figure	2).		The	electronic	chips	you	place	on	the	board	now	
have	 ready	 access	 to	 power	 through	 short	 wires	 to	 sockets	 along	 the	 long	 strips.	 After	
wiring	a	circuit	to	the	solderless	board,	the	oscilloscope	is	useful	for	measuring	voltages	at	
various	points	on	the	circuit,	by	using	one	of	the	scope	probes.			

	
Fig.3	Solderless	Breadboard	

Part	II:		Potentiometers	(45	min.)	
A	potentiometer	 (also	 called	pot)	 is	 a	device	 that	you	can	use	 in	your	machine	designs	 to	
measure	a	mechanical	rotation,	because	a	pot	outputs	a	voltage	proportional	to	the	rotation	
of	 its	 shaft.	This	 is	useful	 for	different	design	activities,	 such	as	 for	 sensing	 the	angle	of	 a	
robotic	 arm	 joint	or	 a	wheel	 attached	 to	a	motor	 shaft.	 	 You	 can	also	use	a	pot	 to	 set	 the	
voltage	input	into	a	circuit	(for	example,	to	allow	you	to	adjust	the	loudness	of	a	radio	or	the	
control	gains	for	a	robotic	controller.	

	

	

Vin

+

-

Vout
R1

R2

+

-
BAD IDEA!!

	

Fig.4			Potentiometer	circuits,	and	actual	potentiometer.		In	the	circuit	diagrams,	the	wiper	is	the	wire	
with	an	arrow	on	it.		Unless	otherwise	labeled,	the	wiper	is	the	middle	connector.		

4A	 4B	

Figure	4	shows	a	pot	being	used	that	produces	an	output	voltage	proportional	to	the	shaft	
rotation.	 	 The	pot	works	 as	 follows.	As	 you	 turn	 the	 shaft	 of	 the	pot,	 the	wiper	 (which	 is	
wired	to	the	middle	terminal	on	the	pot)	moves	along	a	resistive	element.		So,	in	the	figure	
above,	R1	and	R2	change	as	the	wiper	slides	along	the	resistance,	while	their	sum,	R1+R2	=	
constant	(which	is	the	“value”	of	the	pot,	so	a	50K	pot	as	R1+R2	=	50	Kilo	ohms).		

Derive	Vout	as	a	function	of	Vin	,R1,	and	R2	for	Figure	4A.		Assume	R2	changes	proportionally	
to	the	shaft	angle	of	the	pot.		How	then	does	the	output	voltage	change	as	a	function	of	the	
shaft	 angle	 of	 the	 pot.	 	 Using	 this	 information,	 brainstorm	 two	 possible	 uses	 for	
potentiometers	on	your	final	project.	

𝐴𝑛𝑠𝑤𝑒𝑟: 𝑉𝑜𝑢𝑡 =
𝑅2

𝑅1 + 𝑅2
𝑉𝑖𝑛	

Note:	Vout	is	linearly	proportional	to	the	angle	of	the	potentiometer	shaft!			

Proof:	If	R2	=	kθ,	where	k	is	constant	and	θ	is	the	angle	of	the	pot,	and	we	set	Vin	=	constant,	and	we	know	R1	+	
R2	=	Rtot	=	constant,	then	Vout	=	aθ/Rtot*Vin	=	Cθ, that	is,	Vout	is	proportional	to	the	shaft	angle,	with	some	
proportionality	constant	C. 	

Why	should	you	never	use	the	circuit	in	figure	4B?	

Answer:	If	the	pot	is	turned	to	the	extreme	end,	there	is	no	resistance	to	current	flow	and	the	
end	part	of	the	resistive	element	will	be	burned	out.		

Practical	Exam	2:		Show	your	TA	you	can	control	the	voltage	output	of	the	pot	by	turning	
the	shaft.		Show	the	TA	the	voltage	output	using	the	oscilloscope.	

	 	

Part	III:	The	Seeeduino	board	and	Arduino	IDE	(45	min.)	
In	this	section	of	the	lab	you	will	work	with	a	well-known	microcontroller	board	that	can	be	
used	 to	 read	many	 types	 of	 sensors	 as	 inputs	 and	 control	 a	 variety	 of	 actuators	 (e.g.	 dc	
motors,	 electronic	 valves).	 	 These	 microcontrollers	 can	 be	 programmed	 and	 monitored	
using	the	Arduino	IDE.	

Additional	resources:	

• Microcontroller	board:	
o http://www.seeedstudio.com/depot/Seeeduino-V42-p-2517.html?cPath=6_7	

• Arduino	IDE:	
o http://arduino.cc/en/main/software	

For	this	portion	of	the	lab	you	will	use	the	Seeeduino	board	to	make	an	LED	light	blink	and	
display	this	behavior	on	the	oscilloscope.	Note	that	these	boards	are	equipped	with	an	on-
board	LED	(connected	to	the	digital	pin	#13)	that	we	will	use	in	this	portion	of	the	lab	(this	
LED	can	be	very	useful	when	debugging	programs).	

Software	setup		
First,	 connect	 the	 Seeeduino	 to	 the	 computer	 and	 open	 the	 Arduino	 Integrated	
Development	Environment	(IDE).		You	can	use	either	the	lab's	computer	or	download	it	into	
your	 own	 computer.	 Depending	 on	 whether	 the	 drivers	 for	 the	 microcontroller	 have	 been	
previously	 installed	 you	may	 need	 to	wait	 for	 your	 computer	 to	 install	 the	 required	 drivers	
(this	should	not	be	the	case	if	you	are	using	the	lab's	computer).			

Once	the	computer	is	done	installing	the	required	drivers,	you	now	need	to	setup	the	IDE	for	
the	appropriate	board	and	communication	port	(COM	port	in	Windows	machines).	You	can	do	
this	going	to	Tools	>	Board	and	 selecting	 the	 "Arduino	Duemilenove"	and	then	going	to	
Tools	>	Serial	Port	and	selecting	the	appropriate	port	(this	value	may	vary	but	it	will	most	
likely	be	the	highest	number	port	on	the	list).	If	"Arduino	Duemilenove"	does	not	work,	you	
can	try	"Arduino	Uno"	and	"Arduino	Nano".	Also,	plugging	the	USB	cable	on	and	off	can	solve	
some	of	the	connection	problems	you	may	face.	

	 	

Example:	Blink	
You	can	now	either	copy	the	code	below	or	open	it	directly	from	the	Arduino	IDE	by	going	
to:	File	>	Sketchbook	>	Examples	>	Digital	>	Blink.	

Once	the	code	is	ready,	go	ahead	and	compile/verify	the	code	(either	by	pressing	CTRL	+	R	
or	clicking	on	the	'Verify'	icon).	Once	the	IDE	reads	'Done	compiling.'	go	ahead	and	upload	
the	code	to	the	microcontroller	by	either	pressing	CTRL	+	U	or	clicking	on	the	'Upload'	icon.	
If	 the	 IDE	 reads	 'Done	 uploading.'	 then	 you	 have	 successfully	 uploaded	 the	 code	 to	 the	
microcontroller.	 If	 your	 code	 was	 successfully	 uploaded	 you	 should	 see	 the	 board's	 LED	
turn	on	and	off	in	1-second	cycles.	

More	info:	https://www.arduino.cc/en/Tutorial/Blink	

Arduino	 programs	 must	 always	 include	 at	 least	 two	 functions:	 setup()	 and	 loop()
(although	they	may	also	include	more). As	soon	as	the	microcontroller	is	powered	it	will	
first	 run	 the	 commands	 in	 the	 setup()	 function	 and	 then	 move	 on	 to	 executing	 the	
commands	in	the	loop()	function	until	the	power	is	removed.	

	 	

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.

 Most Arduinos have an on-board LED you can control. On the Uno and Leonardo,
it is attached to digital pin 13. If you're unsure what pin the on-board
LED is connected to on your Arduino model, check the documentation at
http://www.arduino.cc
This example code is in the public domain.
*/

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize the led pin as an output.
 pinMode(led, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Serial	Monitoring	and	Millis	Function	
Many	times	you	will	be	interested	in	monitoring	values	in	your	Arduino	program.	To	do	this,	
you	can	use	the	Serial	Monitor.	The	Serial	Monitor	is	a	feature	of	the	Arduino	IDE	that	
allows	you	to	communicate	with	the	board	via	serial	commands.	To	explore	this	feature	we	
will	print	to	the	serial	port	the	value	being	set	to	the	LED	pin.	First,	you	need	to	modify	the	
'Blink'	example	to	allow	for	serial	communication	between	the	computer	and	the	
microcontroller;	do	this	by	adding	the	following	command	to	the	setup()	function:	
Serial.begin(9600).	You	can	now	"print"	to	the	serial	command	the	value	being	set	to	
the	LED	pin.		

Note:	Serial.print(…)	differs	from	Serial.println(…)	in	that	‘println’	includes	a	‘carriage	
return’	at	the	end	of	the	line,	which	ends	printing	on	the	line.	In	other	words,	the	next	print	
statement	will	start	on	a	new	line.	

For	the	final	portion	of	this	lab	we	will	add	a	measure	of	the	time	that	has	elapsed	since	the	
program	began	executing.	This	will	be	a	brief	introduction	into	using	measurements	of	time	
with	 Arduino	 programs.	 To	 do	 this,	 we	 will	 use	 the	 millis()	 function	 and	 print	 the	
current	time	of	the	program	each	time	we	print	the	state	of	the	LED	pin	(see	below).	

Once	 the	code	 is	 ready,	go	ahead	and	"Verify/Compile"	and	 then	"Upload"	 it	 to	 the	board.	
Finally,	to	monitor	the	values	being	printed	to	the	serial	port,	open	the	Serial	Monitor	(click	
CTRL	+	 SHFT	+	M	 or	 click	 on	 the	 Serial	Monitor	 icon).	 The	 Serial	Monitor	 should	 update	
every	second	with	the	state	of	the	LED	pin.	

To	read	values	from	the	Arduino,	connect	the	oscilloscope	CH	1	probe	to	pin	13	(use	a	wire	
to	connect	 the	probe	to	the	Arduino	pin).	Make	sure	to	connect	 the	alligator	clip	 from	the	
oscilloscope	to	the	Arduino	GND	pin!		

	

Practical	Exam	#3:	Modify	the	code	provided	in	the	'Blink'	example	and	make	the	LED	
blink	at	a	frequency	of	4Hz.	Show	your	TA	that	the	light	is	blinking	at	this	frequency	by	
connecting	the	board	to	the	oscilloscope	and	displaying	at	least	two	periods	of	the	signal.	

	

Extra	time,	self-motivated,	and	curious?		Try	to	figure	out	how	to	read	the	
pot	voltage	into	the	Arduino	using	one	of	the	A/D	ports,	then	use	it	to	turn	the	LED	on	and	
off.		
	
	

	
	

/*
 Blink and print
 Turns on an LED on for one second, then off for one second, repeatedly.
 Writes the state and the current time to the serial port.
*/

// Pin 13 has an LED connected on most Arduino boards. Give it a name:
int led = 13;

// Variable to store the LED state: it can only be HIGH or LOW
bool ledState;

// Variable to store the current time
unsigned long currentTime;

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(led, OUTPUT);
 Serial.begin(9600); // Start serial communication
}

// the loop function runs over and over again forever
void loop() {
 ledState = HIGH; // HIGH is the voltage level
 currentTime = millis(); // Get milliseconds since the arduino was
turned on
 digitalWrite(led, ledState); // turn the LED on

 // Write to serial the state of the LED and the current time
 Serial.print(ledState);
 Serial.print("\t");
 Serial.println(currentTime);

 delay(1000); // wait for a second

 ledState = 0;
 currentTime = millis(); // Get milliseconds since the arduino was
turned on
 digitalWrite(led, ledState); // turn the LED off

 // Write to serial the state of the LED and the current time
 Serial.print(ledState);
 Serial.print("\t");
 Serial.println(currentTime);

 delay(1000); // wait for a second
}

	

