
MAE106 Laboratory Exercises 
Lab # 2 - Introduction to data 
acquisition systems and filters 

University of California, Irvine 
Department of Mechanical and Aerospace Engineering 

Goals 
 To learn how to read an analog signal into a microcontroller and process it, then 

send out a signal. 
 To learn about analog and digital filters and how they can be applied to robotics and 

your final project. 

 To observe the dynamics of a first-order system. 
 To learn about pulse-width modulation.  

Parts & equipment 
Qty Part/Equipment 

1 Breadboard 

2 10KOhm Potentiometers 

Various Wire 

1 Function generator (Trainer kit) 

1 Oscilloscope 

1 Multimeter 

1 Seedduino board 

1 Capacitor 

  

Introduction 
When dealing with electromechanical systems we often need to read signals from 
sensors that can convert physical phenomena into electrical signals (i.e. potentiometers, 
acceloremeters, thermometers, etc.), process them, and take actions based on these 
readings.  A key part of this process involves being able to read these analog signals 
and transform them into digital ones so that a computer can manipulate them. To do 
this, we will use an inexpensive data acquisition system (DAQ): the Seeeduino 
microcontroller. 

In a common configuration for DAQ systems (Figure 1) - and one we will be using 
throughout this class - we first want to read from one or multiple sensors. We will do so 
by using the DAQ system (i.e. seeeduino) to convert the analog (i.e. continuous) signal 
into a digital (i.e. 0's and 1's) signal; this is known as analog-to-digital (A/D) conversion. 



Once the signal is read into the microcontroller we can now process it and finally create 
new signals to control outputs such as lights or motors; this is known as digital-to-
analog (D/A) conversion. 

 

Part I: Analog filters and Pulse-width modulation 
In many cases when dealing with real-world systems the input and output signals that 
we use will require some type of pre- and/or post-processing. A key tool in this 
processing is filtering. 

Signal processing filters are an important part of engineering design. They are often 
found in stereos (cross-overs, graphic equalizers, etc.), control systems (for cars and 
planes, to clean up sensor readings from strain gauges, tachometers, potentiometers, 
etc.), and many other applications. In control systems, filters can help remove unwanted 
high-frequency noise that may adversely affect the controller. Filters are also important 
conceptually because we can view any system as a filter. For example, you can view the 
steering system of a new car in terms of how it responds to low, medium, and high 
frequency inputs. Understanding how systems respond to different input frequencies 
requires understanding how filters work. So, in summary, as a mechanical engineer 
designer, it is likely that you will want to use filters in your designs, or at least think 
about the devices you build as filters. 

In this lab, we will study the RC circuit, which can be used as a low-pass or high-pass 
filter. Low-pass filters attenuate high frequency signals (i.e. reduce them in amplitude), 
but leave low frequency signals relatively unchanged. Low pass filters are often useful 
for filtering out high-frequency noise (due to electromagnetic interference from the 
lights or radio signals, for example.) Also, many objects and systems in the world act 
like low-pass filters. For example, anything with mass acts like a low pass filter in the 
way any force applied to it gets turned into a change in position of the object (i.e. if you 
push very slowly on a block of ice, it moves a lot back and forth, but if you push at high 
frequency, such as vibrating it, it does not move as far back and forth). In contrast, high 
pass filters attenuate low frequency signals, so they are used to filter low frequency 
noise from signals. They are used in many applications as well, such as filtering low 
frequency noise from electrodes measuring muscle or brain activity. 

First-Order Linear Systems: This lab also provides a chance for you to measure how a 
first-order linear system behaves in the time and frequency domains. The RC circuit is a 
first-order system (i.e. it is described by a first-order differential equation). The 
mathematics behind a first-order system are extremely common in engineering, so 

Figure 1. Common configuration for a DAQ system 



measuring an actual first-order system will give you experience and intuition about how 
any first-order system behaves, whether it be electrical, mechanical, chemical, or 
biological. 

Low-pass filter 
The circuit shown in Figure 2 is a low-pass filter. 
Thus, it tends to get rid of any high frequencies 
on the input Vin, just allowing low frequencies 
through to the output Vout. To get some physical 
intuition why, consider the response of the circuit 
a square wave voltage input. A square wave is a 
signal that changes very rapidly for short periods 
of time (when the voltage jumps up, or when it 
jumps down). Based on Fourier analysis, in 
which we view a signal as a sum of sinusoids at 
different frequencies, we know that these rapid 
changes are enabled by very high frequency 
sinusoids contained in the square wave. 

Now, the RC filter circuit filters out these high 
frequency sinusoids, and therefore the rapid changes. In 
terms of the motion of charges in the circuit, the 
capacitor (C) acts as a charge bucket, which is alternately charged (filled) and 
discharged by the square wave input Vin. Essentially, the capacitor is charged by Vin 
until the voltage across the capacitor matches that of Vin. If Vin is then switched off to a 
lower voltage value, C begins to discharge through R so that Vout heads toward that 
low value again. It takes time, however, for the capacitor to charge and discharge 
through the resistor. That is, the capacitor has dynamics that slow down Vout and 
prevent it from exactly following Vin.  

The differential equation that relates Vout to a step change in Vin can be derived from 
KCL and KVL for the RC circuit and is given by: 

𝑉𝑜𝑢𝑡 =  𝑉𝑖𝑛(1 − 𝑒−𝑡/𝑅𝐶) 

where 𝜏=RC is the time constant of the system.  Thus, because of the first order 
dynamics, the net effect of the low-pass filter is to get rid of the rapid transitions in 
voltage in the square wave. 

Time Constant 
The time constant is an important descriptor of the circuit, and of all first order, linear 
systems in general.  Note that when time t elapses long enough to equal 𝜏, then we get:  

𝑉𝑜𝑢𝑡 =  𝑉𝑖𝑛(1 − 𝑒−1) = 0.63*𝑉𝑖𝑛 

That is, after time as elapsed for a duration equal to one time constant 𝜏, the output has 
gone 63% of the way toward its final value, Vin.    Here is a more formal definition of 
time constant: 

Figure 2. Low-pass filter 

 

t 
V(t) 



“In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), 
is the parameter characterizing the response to a step input of a first-order, linear time-
invariant (LTI) system. The time constant is the main characteristic unit of a first-order LTI 
(linear time-invariant) system. Physically, the constant represents the time it takes the 

system's step response to reach  of its final (asymptotic) value for 
systems that increase in value (say from a step increase), or it can represent the time for 

systems to decrease in value to  (say from a step decrease).” (Wikipedia).  
In other words, after one time constant, the system has gone 63% of the way to where it 
output is going. 

The time constant also relates to the filtering properties of the circuit.  For the low-pass filter, 
the frequency at which the filter starts to filter out higher frequencies is known as the “cut-off 

frequency”.  The cut-off frequency for the first-order, low-pass filter is 𝜔𝑐 =
1

𝜏
 rad/sec, or 𝑓𝑐 =

1

2𝜋𝜏
 Hz. 

Pulse-width modulation (PWM) 
Another use of low pass filters is in pulse-width 
modulation. Some digital boards cannot output a fixed 
constant voltage other than at a few pre-selected levels. 
In the case of the Seeeduino board these levels are 
only 0 V or 5 V. However, some applications will 
require the use of a broader range of voltages. Imagine 
for instance that you want to make an LED fade or (as 
we will use later in coming labs) to spin a motor at a 
desired velocity. This is when Pulse-Width Modulation 
(PWM) is useful.  

PWM consists in sending a set of pulses at high 
frequency. We divide each period in two intervals, the 
ON part (pulse) and the OFF part. The term “duty 
cycle” describes the percentage of ON time 
compared to a full period. Therefore, a signal with a 
0% duty cycle is always OFF while one with a 100% 
duty cycle is always ON. If we low pass filter this PWM signal with a filter with an 
appropriate time constant, the resulting signal is approximately a constant voltage that 
is proportional to the duty cycle. We can then use this resulting signal similar to an 
analog output.  Note that because many physical objects (like motors ) already act like 
low pass filters, you might not even need to incorporate a separate low pass filter – the 
object itself will serve that purpose. 

For this portion of the lab we will use the microcontroller to read an input signal (the 
angle of the potentiometer), process it, and generate a PWM output signal proportional 
to this angle. We will also filter the PWM signal through an RC-low-pass filter and study 
both signals with the oscilloscope. Begin by replicating the circuit in Figure 4 and then 
use the code provided to read, process, and output the required signals.  Note that this 
circuit incorporates the same RC circuit as shown in Figure 2, but the resistor is the 
internal resistor of the pot, which we will be able to change using the pot.  

Figure 3. t1 - pulse duration, T - 
period duration.  

t1/T = duty cycle 
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Figure 4. Circuit for Part I. 

Code - Part I 
// variables for creating a fixed time loop 

unsigned long startTime = 0; 

unsigned long waitTime = 0; 

unsigned long elapsedTime = 0; 

long interval = 1000; 

 

//readValues 

float potentiometer = 0; 

int pwmPin = 11; 

 

void setup() { 

  // put your setup code here, to run once: 

  Serial.begin(9600); 

} 

 

void loop() { 

  startTime = micros(); 

  // put your code in here 

  potentiometer = analogRead(A0); 

   

  // analogRead: reads outputs between 0 and 1023,  

  // analogWrite: writes values between 0 and 255. 

  analogWrite(pwmPin, potentiometer * 255/1023);  

  Serial.println(potentiometer); 

   

  // do not put your code below here 

  elapsedTime = micros() - startTime; 



  waitTime = interval - elapsedTime; 

  if (waitTime > 0){ 

    delayMicroseconds(waitTime); 

  } 

} 

Sampling Rate 
As stated in the Introduction, the Seeeduino is sampling the input signal from one of the 
pots using an A/D converter.  The “sampling rate” is the frequency at which the 
Seeduino is taking sample.  For example, if you programmed the Seeduino to have a 
sample rate of 100 Hz, it would take 100 samples per second.  Clearly, it is important to 
sample at a high enough rate to be able to accurately sense the signal you are sampling.   
There is a mathematical theorem, the Nyquist Sampling Theorem, that says you need to 
sample at least at 2 times the maximum frequency in the signal you are sampling, to be 
able to accurately reproduce the signal (this is called the “Nyquist Frequency”).  For 
example, if you want to sample and reproduce a 10 Hz sine wave, you need to sample it 
at 20 Hz, at a minimum. In reality, you will probably want to sample at least 10-100 
times the Nyquist frequency.  For this piece of code, the sampling rate is set to be 1000 
Hz. Look in the code above and see if you can determine how the sampling rate is set.    

Practical Exam # 1 
Setup the circuit as shown in Figure 4 and show your TA that you can change the width 
of the pulses from the PWM output signal (CH1 in the oscilloscope). In addition, show 
your TA that you can filter this signal (CH2 in the oscilloscope) using the RC circuit; also 
show that you can change the time constant by turning the pot and changing the 
resistor of the RC filter.  Explain where the code sets the sampling rate. 

Part II: Digital filters 
Similarly to analog filters, digital filters have the goal of enhancing or reducing some 
aspects of a signal. However, unlike analog filters that need a continuous signal, digital 
filters only use samples of the signal taken at discrete time intervals. These filters are 
implemented in computer code after the signal is sampled by the Seeeduino board.  
They are useful because you can quickly change their parameters in computer code, 
rather than having to swap out resistors and capacitors.  But they require a computer. 

In general, digital filters will use some past samples of the already filtered signal 
( 𝑦𝑘 , 𝑦𝑘−1, 𝑦𝑘−2, … )  and the present and past values of the unfiltered signal 
(𝑢𝑘 , 𝑢𝑘−1, 𝑢𝑘−2, … ) to compute the present value of the filtered signal (𝑦𝑘). For instance, 

the filter we will be using in the lab obeys the equation: 

𝑦𝑘 =  (1 −  𝛾)𝑢𝑘 +  𝛾 ∗ 𝑦𝑘−1 

Note, there are 100’s of digital filters that are possible.  This is just a simple and useful 
digital low pass filter. In this part of the lab you will implement a digital filter and use 
the potentiometer as an input device to control the gain of the filter. You should see 
how rotating the potentiometer changes the behavior of your filter. To do this, build the 
circuit as shown in Figure 5 and implement the code provided below for Part II. 



 

Figure 5. Circuit for Part II 

 

Code - Part II 
// variables for causing the loop() function to iterate at a constant 

//rate 

long loopDuration = 10000; // the length of time we want each iteration 

   //of the loop() function to take (in microseconds) 

unsigned long startTime = 0; // the time the current iteration of the  

   //loop() function began 

unsigned long elapsedTime = 0; // the amount of time elapsed while 

 //current iteration of the loop() function was being performed 

unsigned long waitTime = 0; // amount of time to delay at the end of  

 //the current iteration of the loop() function 

 

// define a square wave 

float squareWaveState = 0.0; // the current state of the square wave  

  //signal, it will toggle between 0 and 1 

int numberOfLoops = 10; // number of times to run the loop() function  

  //between toggling the square wave's state 

int loopCount = 0; // counts the number of times the loop() function  

  //has run since last toggling the square wave's state 

int loopNumber = 0; // counts the number of times the loop() function  

  //has run since the Arduino began 

 

// variables pertaining to filtering the square wave 

float potentiometer = 0; // A 0 to 1 signal reflecting the    

    //potentiometer knob position 

float filteredSignal = 0; // the variable that represents the output of 

    //our digital filter 

float filteredSignal_previous = 0; // the previous state of   

    //filteredSignal 



 

void setup() { 

  // put your setup code here, to run once: 

  Serial.begin(115200); 

} 

 

void loop() { 

  startTime = micros(); 

  // put your code in here 

  potentiometer = analogRead(A0)/1023.0; // analogRead converts a 

 //voltage of 0-5V into a number between 0-1023 

  if (loopCount >= numberOfLoops){ 

    squareWaveState = 1.0 - squareWaveState; // this will toggle square 

      //wave state - think about it. 

    loopCount = 0; // after we toggle the square wave, it has been zero 

   //loop iterations since we last toggled it 

    digitalWrite(13, squareWaveState); // the built in LED will display 

      //the square wave state 

  } 

   

  loopNumber++; // increases loopNumber by 1 

  loopCount++; 

     

  filteredSignal = averagingFilter(squareWaveState, potentiometer);  

 // apply the digital filter to the square wave signal 

   

  Serial.print(loopNumber); 

  Serial.print("\t"); 

  Serial.print(squareWaveState); 

  Serial.print("\t"); 

  Serial.print(potentiometer); 

  Serial.print("\t"); 

  Serial.println(filteredSignal); 

     

  // do not put add any code below this line 

   

  // these lines ensure that each iteration of the loop() function runs 

the same amout of time  

  elapsedTime = micros() - startTime; // note that the output of 

micros() has changed since we called it earlier in the loop 

  waitTime = loopDuration - elapsedTime; 

  if (waitTime > 0){ 

    delayMicroseconds(waitTime); 

  } 

} 

 

//------------------ simple low pass filter ------------------// 

float averagingFilter(float measuredSignal, float filterStrength){ 

  float filterOutput = (1-filterStrength)*measuredSignal + 

filterStrength*filteredSignal_previous;  

  filteredSignal_previous = filterOutput; 

  return filterOutput; 

} 

 



Practical Exam #2 
Use the code provided for Part II to create a square wave using the microcontroller.  
Use the filter provided along with the potentiometer to digitally filter the square wave. 
Record both the input and output signals using the serial monitor and plot them in the 
computer; show these two signals to your TA and be prepared to explain what is 
happening.  Show your TA the line of code that implements the equation for the digital 
filter. 

Terms to study on your own 
We covered a lot of concepts in this lab. Here is a list of terms that you should review 
and make sure you understand. You may need to consult not only the lab, but the 
lecture notes, the optional text book, and the web to understand these terms. 

DAQ 
AD convertor 
DA convertor 
Fourier analysis 
Sampling rate 
Nyquist sampling theorem 
Pulse-width modulation 
Filter 
Low-pass filter 
First-order, linear system 
Time constant 
Cut-off frequency 
Digital low pass filter 

 

Write-Up 
1. Plot the unfiltered and filtered signals from Part II of the lab. Make sure to label all 
axes and lines in the plot.  

2. On the same plot, for one cycle only, use the appropriate mathematical equation to 
predict what the filtered signal should look like, and plot it on the same plot.  You will 
have to find a way to estimate the time constant, to use it in your equation. 

3. Briefly explain how you could use a low-pass filter in your project.  Do you think you 
will use an analog or digital filter for this purpose? 


