
MAE106 Laboratory Exercises 
Lab # 6 - Vibrating systems 

Goals 
Understand how the oscillations in a mechanical system affect its behavior. 

Parts & equipment 
Qty Part/Equipment 

1 Seeeduino board 

1 Motor driver 

1 DC motor with encoder 

1 Potentiometer 

1 Accelerometer 

Various Rubber bands 

1 Vibration unit 

Introduction 
Why study vibrations? Vibration is a term engineers use to describe oscillations in a 
system. Understanding vibrations is important for a wide range of engineering design. In 
some applications, such as car, bridge, building, and machine design, you often want to 
design the system so that it vibrates as little as possible. In other applications, you might 
want to design a system that uses vibrations to advantage, such as for radios, musical 
instruments, and medical equipment such as magnetic resonance imaging devices. 

How we will study vibrations? In this laboratory exercise you will look at the vibrations of 
a cantilevered beam that supports a motor with an unbalanced load attached at its end. 
This system represents many typical problems in vibrations. For instance, a large rotating 
machine attached to a building floor can be analyzed in the same manner as this 
experiment, with the floor taking the place of the cantilevered beam. Alternatively, a 
building shaking during an earthquake can also be represented by the same equations, 
with the building acting as the beam itself. 

Second order systems and vibrations: This lab deals with a second order system. In other 
words, the differential equation that describes the system has second derivatives, and the 
transfer function has s2 terms. Many mechanical systems behave as second order 
systems because of Newton’s second law (F = ma) in which acceleration is the second 
derivative of position. In fact, you can view a vast number of mechanical and control 
systems as second order linear mass, spring, damper systems. Thus, developing intuition 
about how second-order systems behave is very important. One key difference between 
second and first order systems, as you will see in this lab, is that second order systems 
can oscillate (i.e. vibrate). First order systems cannot oscillate. 

  



Part I: Time domain analysis of the beam (Transient response) 
In this part of the lab, you will measure how the beam responds to an impulsive input. This 
is known as the “transient response”, and more specifically, as the “impulse response” of 
the beam, and is a typical way to look at a time-domain response. For example, if you 
wanted to measure how well a car suspension you designed works, you would measure 
its impulse response, which in physical terms is how the car bounces up and down in 
response to driving over a bump. 

Calibrating the accelerometer 
To accurately analyze the beam motion, you need to calibrate the accelerometer to make 
sense of its output. “Calibrating” a sensor refers to the process of measuring what output 
from the sensor corresponds to what level of the measured variable. For the 
accelerometer, you need to know how the output voltage and acceleration correspond. 
You can use gravity as your known acceleration, and measure the voltage output 
corresponding to gravity. In this case, we want the reading from the accelerometer to 
measure 1 g (9.8m/s2) when it is laying on its side, and 0g when the vibration unit standing 
upright. See figure 1 for a graphical depiction. 

 

First, make sure your accelerometer is receiving 5v/ground from the Arduino and the z 
terminal is connected to analog 4 (A4) on the Arduino.  

Examine the Arduino code and find where the code uses the constants accelRange (which 
is set to 51) and accelMean (which is set to 263). The steps used to find these values 
were: 

1. Set accelRange = 1 and accelMean = 0 and recompile. This now prints (to the 
serial monitor) the raw analog/digital counts from the accelerometer.  

2. Record the accelerometer counts at rest (i.e. execute the same program but don’t 
twang the beam).  

3. Rotate the entire apparatus on its side so that the accelerometer reads the 
acceleration of gravity (1 g). Report the accelerometer output corresponding to 1 
g.  

To calibrate your accelerometer, you can use an equation of the form: 

 

Figure 1: Example of calibrated and uncalibrated reading of accelerometer as a result of gravity and 

orientation. 



𝑦 =
𝑥 − 𝑎𝑐𝑐𝑒𝑙𝑀𝑒𝑎𝑛

𝑎𝑐𝑐𝑒𝑙𝑅𝑎𝑛𝑔𝑒
 

Where x is the raw input from the accelerometer and y is the value you read from the 
Serial Monitor. 

Assuming that the counts are linearly related to the sensed acceleration, how should you 
change the values of accelRange and accelMean so that the accelerometer output is 
displayed in units of “g’s”? (i.e. it reads 1 g when held on its side)? Answer: Fit a line to 
the two data points you just took, where (x1,y1) = (acc1,counts1) and (x2,y2) = 
(acc2,counts2). The equation of the line will be of the form y = m(x- xoffset), or acc = 
(counts-accelMean)/accelRange. Go ahead and set the constants back to their old values 
or you can use their new values if you feel they are more accurate, and then recompile 
the code. 

Using Acceleration to Estimate Beam Position 
You mounted an accelerometer on the beam near the center of mass of the beam. For all 
the subsequent analysis, assume that the length of the beam is from the clamped end to 
the center of the accelerometer. You can then assume that the acceleration of the beam 
is a good measure of its position. The reason for this assumption is that the equation of 
motion of the unforced system has the form: 

 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 =  0 

Notice that if the damping of the beam is small (i.e. 𝑐 ~ 0), then 𝑥̈  =  (−𝑘/𝑚)𝑥. 

For this portion of the lab we will look at the impulse response of the beam by applying an 
impulse to it and measuring its response with the accelerometer. The steps are: 

1. Download and run the Arduino program for measuring the impulse response from 
the course web site. 

2. Open the Serial Monitor in the Arduino IDE in order to output the accelerometer's 
readings at 100Hz. 

3. Apply an impulse input to the beam. You just need to twang the beam with your 
hand to make it vibrate (make sure to hold the base still). 

4. Plot the impulse response of the beam by plotting the accelerometer reading 
versus sample number. Note that you can convert sample number to time by 
multiplying sample number by the sampling period. Save this data as you will need 
it for your write-up. 

Measuring the natural frequency and damping ratio. Two key parameters used to describe 
a vibrating system are the “damped natural frequency” and the “damping ratio”.  

The damped natural frequency is the frequency that the beam oscillates after an impulse 
input. To measure the natural frequency you need to measure the period between 
oscillations. 

The “damping ratio” of the beam determines how quickly the beam oscillations die out. 
You can estimate the damping ratio using the logarithmic decrement method: 

1. After twanging the beam (impulse input), measure the initial acceleration amplitude 
(A0) at the first acceleration peak. After a number of cycles N (counting the first 



peak as peak “0”), measure the acceleration amplitude again (AN). Hint: Using the 
first 10 peaks is usually sufficient. 

2. Calculate the damping ratio using the following equation for the logarithmic 
decrement method. 

𝛿 =
1

𝑁
ln (

𝐴0

𝐴𝑁
) 

    

Repeat this process five times and calculate the mean and standard deviation of 
your estimate of the damped natural frequency and damping ratio. Save these 
values for your write-up. 

 

Practical Exam 1 
Show the TA all five measurements of your estimated damped natural frequency and 
damping ratio. What was your final value for these parameters? Inform the TA of the 
proper value for accelRange and accelMean.  

 

  



Part II: Frequency Domain Analysis (Forced Response) 
As we have seen in class, designers often think about mechanical systems in terms of 
their frequency response. In this part of the lab, you will determine how the beam responds 
when you apply sinusoidal forces to it at different frequencies; i.e. you will measure its 
frequency response.  

Resonance: As you observe the frequency response, a key phenomenon that you will 
observe is resonance. Resonance can be very destructive to a designed system, or in 
some cases, a designed system might want to take advantage of resonance (such as a 
swing set). 

For this part of the lab, we will use a motor with an off-balance load to apply the sinusoidal 
forces to the beam. You will use the Arduino to drive the motor at a desired velocity and 
use the accelerometer to measure the movement of the beam (the accelerometer is the 
red device on the far right of Figure 3). The pot is used as an input device to control the 
velocity of the motor. That is, you will read in the pot voltage values in real time into the 
Arduino. The Arduino then sets the desired velocity of the proportional velocity controller 
for the motor based on these voltages. This will allow you to continuously vary the speed 
of the motor to try to find the resonant frequency of the beam. Again, make sure to hold 
the fixture base securely as it can begin to move around on the table when it is resonating. 

To study the forced response: 

1. Wire your motor and accelerometer as shown in Figure 3. 
2. Download, compile, and load the Arduino program for measuring the frequency 

response of the beam.  
3. Firmly secure the base of the system using a c-clamp. 
4. Try to find the resonant frequency of the beam by getting it to resonate. Try not to 

let the system shake too badly, i.e. do not let the system stay in resonance too 
long.   

5. Record the input frequency and peak accelerometer amplitude by printing this 
information to the serial monitor. 

 

Figure 1. Wiring diagram for vibrating beam fixture.  



 

Practical Exam 2:  
Demonstrate to the TA that you can drive your beam into resonance. Explain the frequency 
response of your system. Draw a sketch of the magnitude Bode plot (no numbers required). 

 

 

Before you leave, take data during a range of forced response frequencies. Record data 
at two frequencies below and two frequencies above the resonant frequency as well as 
the resonant frequency itself. You will use this data in the write-up.  

  



Part III: Vibration of a system with two masses 
Many mechanical systems have more than one vibrating part, and in this case the parts 
interact to produce different vibration patterns. Understanding these patterns is essential 
for predicting the behavior of your designed system. Sometimes a designer will even 
intentionally introduce a second vibrating part to try to cancel the vibrations produced in 
normal course of operation of a machine. This is a common “vibration isolation” strategy 
for equipment such as washing machines. 

For this part of the lab, we will consider a system with two vibrating masses. You will try 
to identify three distinct movement patterns of the beam – two vibration modes, and a 
vibration cancellation mode. Mathematically, the vibration isolation frequency corresponds 
to a zero in the transfer function. 

To identify these three movement patterns: 

1. Connect a rubber band between the two beams.  
2. Adjust the input frequency of the motor (i.e. its rotational speed) to see how many 

modes of vibration you can observe.  
a. At a low frequency, you should be able to see the beams resonating in 

phase.  
b. As you increase the frequency slightly, you should be able to get the beam 

with the motor attached to it to stay relatively still while the other beam 
oscillates a lot. This is the vibration isolation frequency. Be patient in finding 
this mode; you may need to wait a few seconds after each adjustment of 
speed to let transients die out.  

c. Finally, as you increase the frequency more, you should be able to get the 
beams to resonate 180 degrees out of phase. We will derive the 
mathematical equations that describe these three behaviors in a later 
lecture. 

 

Practical Exam 3 
Demonstrate to the TA one of the resonant modes and the vibration isolation phenomenon. 

 

  



Write-Up 
1. Derive the transfer function for the mass-spring-damper system we used in lab. 

Remember that the equation of motion is of the form: 

        𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 =  𝑓(𝑡) 

2. Report the mean and standard deviation of the estimated damped natural 
frequency and the damping ratio over at least five impulse response 
measurements. 

3. Using MATLAB or Excel, plot the magnitude bode plot from the acceleration data 
in Part II. Assume values well below the resonant frequency are not amplified 
(gain=1), thus their decibel value is equal to 0 (20log(1)=0). Estimate the 
interpolated lines between data points.  

4. Estimate the resonant frequency of the beam given your measurements of the 
damped natural frequency and the damping ratio. How close is this estimate to the 
resonant frequency you measured experimentally?  
 

𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 
 

𝜔𝑟 =  𝜔𝑛√1 − 2𝜁2 

 

𝜁 ≤  0.707 

 


